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Fumonisins are polyketide-derived mycotoxins produced by the maize pathogen Fusarium verticil-
lioides. Previous analyses identified naturally occurring variants of the fungus that are deficient in
fumonisin C-10 hydroxylation or that do not produce any fumonisins. In the current study, gene deletion
and genetic complementation analyses localized the C-10 hydroxylation deficiency to a cytochrome
P450 monooxygenase gene in the fumonisin biosynthetic gene (FUM) cluster. Sequence analysis
indicated that the hydroxylation deficiency resulted from a single nucleotide insertion that caused a
frame shift in the coding region of the gene. Genetic complementation localized the fumonisin-
nonproduction phenotype to the polyketide synthase gene in the FUM cluster, and sequence analysis
indicated that the nonproduction phenotype resulted from a nucleotide substitution, which introduced
a premature stop codon in the coding region. These results provide the first direct evidence that
altered fumonisin production phenotypes of naturally occurring F. verticillioides variants can result
from single point mutations in the FUM cluster.
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INTRODUCTION

Fumonisins are polyketide mycotoxins that can accumulate
in maize and can cause animal health problems, including cancer
and neural tube defects in laboratory rodents (1, 2). Consumption
of fumonisin-contaminated maize has also been epidemiologi-
cally correlated with human esophageal cancer and neural tube
defects in some regions of the world (3, 4). Fumonisins are
produced by several relatively closely related species of the
genusFusarium(5, 6). Of these fungal species,F. Verticillioides
(sexual stateGibberella moniliformis) has received the most
attention because of its widespread occurrence on maize and
its ability to cause maize ear and stalk rot (7). F. Verticillioides
typically produces fumonisins B1, B2, B3, and B4 (FB1, FB2,
FB3, and FB4, respectively). These compounds share a linear
20-carbon backbone with an amine at carbon atom 2 (C-2) and
tricarboxylic acid moieties esterified to C-14 and C-15 (8). The
compounds differ from one another by the presence or absence
of hydroxyl functions at C-5 and C-10 (Figure 1). FB1 has both
hydroxyls, FB2 lacks the C-10 hydroxyl, FB3 lacks the C-5
hydroxyl, and FB4 lacks both the C-5 and C-10 hydroxyls. In
general, FB1 is the most abundant fumonisin (∼70%) in
naturally contaminated maize and in cultures of most field

isolates ofF. Verticillioides, whereas FB2, FB3, and FB4 are
less abundant (9).

In surveys of F. Verticillioides aimed at examining the
diversity of fumonisin chemotypes and their potential in the
biological control of fumonisin contamination, researchers have
identified naturally occurring variants of the fungus with
relatively rare chemotypes (10, 11). One variant isolated from
maize from Nepal produced no fumonisins; another variant
isolated from maize from South Carolina was deficient in C-5
hydroxylation and, as a result, produced only FB3 and FB4; and
a third variant, also isolated from maize from South Carolina,
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Figure 1. Chemical structures of fumonisins B1, B2, B3, and B4.
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was deficient in C-10 hydroxylation and, as a result, produced
only FB2 and FB4. Meiotic analyses indicated that these altered
production phenotypes were caused by nonfunctional alleles at
three closely linked loci. The nonproduction phenotype resulted
from a nonfunctional allele at theFum1 locus (12), the C-10
hydroxylation deficiency resulted from a nonfunctional allele
at theFum2locus, and the C-5 hydroxylation deficiency resulted
from a nonfunctional allele at theFum3 locus (13).

Molecular genetic analysis ofF. Verticillioideshas identified
a fumonisin biosynthetic gene (FUM) cluster that consists of
15 coregulated genes, all of which exhibit a pattern of expression
that is correlated with fumonisin production (14). The roles of
some of the clusteredFUM genes in fumonisin biosynthesis
have been determined (15-19). Several studies have provided
indirect evidence for relationships between natural variations
in fumonisin production and the clusteredFUM genes. Three
lines of evidence suggest that the naturally occurring fumonisin-
nonproduction phenotype may result from a mutation in or near
the FUM cluster. First, fumonisin-nonproducing strains ofF.
Verticillioides can be generated by disruption (inactivation) of
threeFUM genes, the polyketide synthase geneFUM1 (previ-
ously FUM5), the cytochrome P450 monooxygenase gene
FUM6, and the oxoamine synthase geneFUM8 (18, 20).
Second, meiotic analysis indicated that the naturally occurring
mutation that caused the fumonisin-nonproduction phenotype
was loosely linked toFUM1 and therefore theFUM cluster
(A.E.D., R.D.P., and R.H.P., unpublished results). Finally,
introduction of cosmid clone 16-1, which had the entireFUM1
gene, only part ofFUM6, and no other knownFUM genes,
restored fumonisin production in strain 57-7-7, which has the
naturally occurring nonproduction phenotype that originated in
Nepal (20). In contrast, cosmid clone 2-2, which had only part
of FUM1 and no other knownFUM genes, did not restore
production to strain 57-7-7 (20). Although the latter results
suggest that a mutation withinFUM1 is responsible for the
naturally occurring nonproduction phenotype, they are incon-
clusive. Because cosmid clone 16-1 was only partially charac-
terized, the results do not rule out the possibility that some other
gene(s) in clone 16-1 restored fumonisin production. There is
even less evidence for an association between the C-10
hydroxylation deficiency and genes in theFUM cluster. Neither
cosmid clone 2-2 nor 16-1 restored production of the wild-type
complement of FB1, FB2, FB3, and FB4 when introduced into a
strain with the naturally occurring C-10 hydroxylation deficiency
(20). Thus, the relationships of the fumonisin nonproduction

and C-10 hydroxylation-deficient phenotypes to theFUM gene
cluster remain unresolved.

There is strong, albeit indirect, evidence for an association
between the naturally occurring C-5 hydroxylation deficiency
and theFUM cluster. The evidence was obtained from two
laboratory-induced mutant strains ofF. Verticillioides that have
the C-5 hydroxylation deficiency. The first mutant was generated
by UV light mutagenesis (21), and the second was generated
by specific deletion of a dioxygenase gene (FUM3) in theFUM
cluster (22). Sequence analysis of the UV-light-induced mutant
revealed a mutation inFUM3 that was predicted to render the
gene nonfunctional. Because both laboratory-generated muta-
tions ofFUM3 resulted in the C-5 hydroxylation deficiency, it
is likely that naturally occurring C-5 hydroxylation deficient
strains also have a defect inFUM3.

The objective of this study was to elucidate the molecular
genetic basis of the fumonisin-nonproduction and C-10 hy-
droxylation-deficient phenotypes that occur in natural variants
of F. Verticillioides. The results of this study will contribute to
understanding fumonisin biosynthesis and the significance of
different fumonisin chemotypes in the ecology ofF. Verticil-
lioides and in maize agriculture. Some of the results of the
current study have been previously reported in an abstract (23).

MATERIALS AND METHODS

Fungal Strains and Media. Previously identified strains ofF.
Verticillioides used in this study and their fumonisin-production
phenotypes are listed inTable 1. Strain ISU-93-152 was provided by
Professor Donald White (University of Illinois). For production of
conidia, strains were grown on V-8 juice agar medium (24) for 7-10
days, and for DNA preparation, strains were grown in liquid GYEP
medium (0.3% glucose, 0.1% yeast extract, 0.1% peptone) for 2-3
days.

Nucleic Acid Manipulations. F. Verticillioides genomic DNA was
prepared from dried mycelia with the DNeasy Plant Mini Kit as
described by the manufacturer (Qiagen, Valencia, CA). All DNA
plasmids used as transformation vectors in deletion or complementation
experiments were purified fromEscherichia colicells with the Midi
Prep Kit (Qiagen). AllFusarium-derived DNA fragments that were
amplified by Polymerase Chain Reaction (PCR) and used in the
construction of vectors were amplified withPfuUltra (Stratagene, La
Jolla, CA) orPfx (Invitrogen Life Technologies, Carlsbad, CA) DNA
polymerase. The nucleotide sequences of such fragments were deter-
mined to confirm that no errors were introduced during PCR.
Sequencing reactions were done with the BigDye Terminator Cycle
Sequencing (version 3.1, Applied Biosystems, Foster City, CA)

Table 1. F. verticillioides Strains Used in the Study

strain fumonisin productiona genotypea strain origin parent strains ref

M-3125 FB1, FB2, FB3, FB4 Fum1-1, Fum2-1 field isolate N/Ab 35
ISU-93-152 none ndb field isolate N/A 31
109-R-14 FB2, FB4 Fum1-1, Fum2-2 meiotic progeny M-3120c (?) 13

A-0822c (/)
982-R-50 FB2, FB4 Fum1-1, Fum2-2 meiotic progeny GfA2364 (?) A.E.D., R.D.P., and R.H.P., unpublished results

648-R-183c (/) 21
57-7-7 none Fum1-2, Fum2-1 meiotic progeny M-5500c (?) 13

M-3125 (/)
GfA2364d none Fum2-1 FUM1 disruption mutant N/A 20

a Fumonisin production phenotypes and genotypes were determined previously by LC-MS and meiotic analyses (13, 21). Fum1-1 and Fum2-1 are functional alleles.
Fum1-2 and Fum2-2 are nonfunctional alleles that originated in strains M-5500 and A-0822, respectively (see footnote d for more details on these two strains) (11, 13).b nd
indicates not determined, and N/A indicates not applicable. c Strain M-3120 was a field isolate from California, had the Fum1-1/Fum2-1 genotype, and produced the
wild-type complement of FB1, FB2, FB3, and FB4 (35). Strain A-0822 is a field isolate from South Carolina, had the Fum1-1/Fum2-2 genotype, and produced FB2 and FB4

only (11). Strain 648-R-193 was a meiotic progeny derived from strain A-0822, had the Fum1-1/Fum2-2 genotype, and produced FB2 and FB4 only (13, 21). Strain M-5500
was a field isolate from Nepal, had the Fum1-2/Fum2-1 genotype, and produced no fumonisins. d Strain GfA2364 was generated from wild-type strain M-3125 by disruption
of the FUM1 gene (20). The Fum1 genotype for strain GfA2364 is not included here because, on the basis of the results of the current study, it has neither the functional
Fum1-1 allele nor the nonfunctional Fum1-2 allele.
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protocol. Sequencing reactions were passed through a Sephadex G-50
column (Amersham Biosciences AB, Piscataway, NJ), dried in a
vacuum centrifuge, and resuspended in HiDi (Applied Biosystems)
before electrophoretic analysis on a 3100 Genetic Analyzer (Applied
Biosystems). Transformants ofF. Verticillioideswere examined by both
PCR and Southern blotting according to standard methods (25).
Labeling of hybridization probes for Southern blots was done with the
Prime-a-Gene system (Promega, Madison, WI) or Ready-to-Go (Am-
ersham Biosciences AB) protocol.

Vector Construction, Transformation, and Meiotic Crosses.The
FUM12 deletion vector, p∆FUM12-Hyg, was constructed using the
same approach previously described to construct theFUM3 andFUM13
deletion vectors (16, 22). The 1.4-kb regions immediately up- and
downstream of theFUM12 coding region were amplified and cloned
into pT7Blue (Invitrogen Life Technologies). The primers used to
amplify the upstream fragment were 5′-CGTGGATCCTGCCAGAA-
GAATGCCGAACCT-3′ (underlined sequence is aBamHI site) and
5′-CATGGCGCGCCAAGAAGGGAGGGACTCGAGTCT-3′ (under-
lined sequence is anAscI site), and the primers used to amplify the
downstream fragment were 5′-CATGGCGCGCCAAGCACAGGT-
TGAGTGGGATTG-3′(underlined sequence is anAscI site) and 5′-
GTCGAGCTCAGCACAGCATAGCCCACATGTC-3′(underlined se-
quence is aSacI site). The two amplicons were cloned into the same
vector (pT7Blue) with theBamHI, SacI, andAscI sites that were
introduced via the PCR primers and/or present in the pT7Blue multiple
cloning sequence. This cloning step restored the orientation and position
of the two fragments found in theF. Verticillioidesgenome except that
the two fragments were separated by anAscI site instead of theFUM12
coding region. TheHygBgene was then inserted between the upstream
and downstream fragments via theAscI site to yield p∆FUM12-Hyg.
Construction of theFUM3 () FUM9) deletion vector, pFUM9KOH,
was described previously (22).

TheFUM12complementation vector, pCFUM12-Hyg, was prepared
by PCR amplification of a fragment spanning from 1052 bp upstream
of the FUM12 start codon to 680 bp downstream of theFUM12 stop
codon. The 3460-bp amplicon was cloned into the pCR XL TOPO
vector (Invitrogen Life Technologies). A 2489-bpNotI fragment
carrying the hygromycin resistance geneHygBwas introduced into the
resulting vector with theNotI site in the polylinker region of pCR XL
TOPO.HygB was modified from pUCH2-8 (26,27) by introduction
of NotI sites at both ends of the gene by PCR amplification with primers
5′-CGATGCGGCCGCACCGGCTGCACATGTCAAGG-3′ and 5′-
GCATGCGGCCGCACAGTTAAATTGCTAACGCAGTC-3′ (NotI sites
are underlined).

The FUM1 complementation vector was constructed from two
overlapping DNA fragments obtained by restriction enzyme digestion
of cosmid clone 16-1 (14, 20). The first fragment was obtained by
DraI digestion of clone 16-1 and spanned from 29 bp upstream of the
FUM1 start codon to 753 bp downstream of theFUM1 stop codon.
The second fragment was obtained bySpeI digestion of clone 16-1
and spanned from 1473 bp upstream to 1580 bp downstream of the
FUM1 start codon. TheDraI fragment was cloned into pBluescript II
(Stratagene), and the resulting construct was cut withSpeI and then
ligated to theSpeI fragment described above. The resulting construct,
pCFUM1, consisted of the entireFUM1 coding region plus 1473 bp
of 5′-flanking and 753 bp of 3′-flanking DNA cloned in pBlueScript
II. This plasmid was introduced intoF. Verticillioides by cotransfor-
mation with plasmid pUCH2-8 as previously described (28). pUCH2-8
carries the hygromycin phosphotransferase geneHygB, which facilitates
selection of transformants by their ability to grow on the antibiotic
hygromycin (26,27).

Transformation ofF. Verticillioides was done with the protoplast
method described previously (20). Transformants were selected by their
ability to grow on hygromycin B at 150µg/mL (20). Sexual crosses of
F. Verticillioides were done with the carrot agar method described
previously (13,29).

Fumonisin Analysis. Strains were grown in 10-g cracked maize
kernel cultures and or in 20-mL GYAM medium cultures as previously
described (18). After a 3-week incubation, cracked maize kernel cultures
were extracted with 5 mL of acetonitrile/water (1:1, v/v) per gram of
culture. After a 2-week incubation, GYAM cultures were filtered

through 0.2-µm Nalgene filters. Extracts and filtrates were analyzed
by HPLC-mass spectrometry (MS) for the presence of fumonisins (30).
The HPLC system employed an Intersil ODS3 column (10 cm, 5µm),
a flow rate of 0.3 mL min-1, and a gradient solvent system that began
with water/methanol/acetic acid (65:35:0.35) and changed to water/
methanol/acetic acid (5:95:0.35) over 10 min. The solvent was
maintained at the latter ratio for 15 min and then returned to the former
ratio over a period of 1 min. The HPLC column was coupled to an
API Source of a Finnigan LCQ Deca MS System (ThermoQuest, San
Jose, CA) operated in the electrospray (ESI) mode. The MS interface
capillary temperature was 255°C, and the spray voltage was 4.5 kV.
The MS scanned for ions from 250 to 950 mass units. FB1, FB2, FB3,
and FB4 were identified by retention time in comparison to standards
and by their ESI spectra.

RESULTS

Identification of the Fumonisin C-10 Hydroxylase Gene.
The FUM12 gene is located in theFUM gene cluster and
encodes a cytochrome P450 monooxygenase (14). To determine
whether this gene is required for fumonisin biosynthesis, we
deleted theFUM12coding region in wild-typeF. Verticillioides
strain M-3125 via transformation with deletion vector p∆FUM12-
Hyg. The vector was designed so that homologous recombina-
tion betweenFUM12 sequences in p∆FUM12-Hyg and in the
F. Verticillioides genome would replace theFUM12 coding
region with theHygBgene and thereby delete the coding region.
One hundred and twenty-two hygromycin-resistant putative
transformants were analyzed by PCR, and only two (strains
GfA2874 and GmT201) yielded the amplification products
expected for deletion of theFUM12 coding region and its
replacement withHygB. The deletion was confirmed by
Southern blot analysis in which genomic DNA was digested
with restriction endonucleaseSnaBI and, after electrophoresis
and blotting, hybridized to a probe that spanned from 1032 bp
upstream to 933 bp downstream of theFUM12start codon. The
probe hybridized to a 2.9-kb DNA fragment in wild-type strain
M-3125 but to a 3.7-kb fragment in theFUM12deletion mutants
GfA2874 and GmT201 (Figure 2A). On the basis of known
sequence data, the expected size of theSnaBI fragment with
FUM12 in wild-typeF. Verticillioides is 2.9 kb, and the expected
size of theSnaBI fragment in which theFUM12 coding region
is replaced by theHygB gene is 3.7 kb.

LC-MS analysis of cracked maize culture extracts revealed
that the twoFUM12 deletion mutants produced only FB2 and
FB4, both of which lack the C-10 hydroxyl. In contrast, the
progenitor strain M-3125 and transformants in whichFUM12
was not deleted produced the wild-type complement of fumo-
nisins including the C-10-hydroxylated FB1 and FB3. In this
experiment, the levels of fumonisins produced in two cultures
of M-3125 were 5300 and 12200µg of FB1, 1900 and 3700µg
of FB2, and 900 and 1300µg of FB3 per gram of cracked maize
culture. The level of FB2 produced by the twoFUM12disruption
mutants was 2400 (GfA2874) to 9200 (GmT201)µg per gram
of cracked maize culture. The presence of FB4 was noted but
not quantified in this experiment. Given that cytochrome P450
monooxygenases often catalyze hydroxylation reactions, these
results indicate that theFUM12-encoded monooxygenase
catalyzes fumonisin C-10 hydroxylation.

Complementation of the Naturally Occurring C-10 Hy-
droxylation Deficiency. The inability of FUM12 deletion
mutants to hydroxylate the fumonisin backbone at C-10 suggests
that strains with the naturally occurring C-10 hydroxylation
deficiency may have a mutation withinFUM12. To address this
possibility, we used transformation to introduce a wild-type copy
of FUM12 into two strains, 109-R-14 and 982-R-50, with the
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naturally occurring C-10 hydroxylation deficiency. These two
strains are meiotic progeny derived from the original C-10
hydroxylation-deficient field isolate A-0822, which was isolated
from maize grown in South Carolina (Table 1). The meiotic
progeny were used in this experiment instead of the original
field isolate because they were more amenable to genetic
analysis. The wild-type copy ofFUM12 was present in
complementation vector pCFUM12-Hyg, and transformants
were selected by their ability to grow on hygromycin B-amended
media.

LC-MS analysis of GYAM culture filtrates revealed that 9
of 11 109-R-14 transformants and 4 of 7 982-R-50 transformants
produced the wild-type complement of FB1, FB2, FB3, and FB4.
In contrast, strains 109-R-14 and 982-R-50 and the remaining
transformants produced only FB2 and FB4. In this experiment,
the 15 complemented transformants of fumonisin production
ranged from 7 to 312µg of FB1, from 1 to 43µg of FB2, from
1 to 49 µg of FB3, and from<1 to 6 µg of FB4 per milliliter of
GYAM medium. Fumonisin production by the two progenitor
strains 109-R-14 and 982-R-50 ranged from 73 to 84µg of FB2

and from 2 to 6µg of FB4 per milliliter of GYAM medium.
The presence of the complementation vector in transformants

was confirmed by Southern blot analysis (Figure 2B). In this
analysis, genomic DNA was digested withEcoRI, electro-
phoresed, blotted, and hybridized to a32P-labeled probe corre-
sponding to nucleotides 816-1593 of theFUM12coding region.
On the basis of known sequence data, the region of the

endogenousFUM12 complementary to the hybridization was
predicted to be present as a 4.6-kbEcoRI fragment, whereas
the same region in the complementation vector pCFUM12-Hyg
was predicted to be present as a 1.7-kbEcoRI fragment. In the
Southern analysis, strains 109-R-14 and 982-R-50 had the 4.6-
kb fragment only, but all transformants with wild-type fumonisin
production had both the 4.6- and 1.7-kb fragments (Figure 2B).
Thus, introduction of a wild-typeFUM12gene into strains with
the naturally occurring C-10 hydroxylation deficiency could
restore wild-type fumonisin production.

FUM12 Sequence in a C-10 Hydroxylation-Deficient
Strain. Complementation of the naturally occurring C-10
hydroxylation deficiency via transformation with a wild-type
FUM12 indicates that there is a mutation withinFUM12 in the
deficient strains. To address this possibility, the entireFUM12
coding region was amplified by PCR from strain 109-R-14 and
then sequenced. The sequence analysis revealed six nucleotide
differences in the amplifiedFUM12 coding region compared
to the previously described wild-typeFUM12 sequence (Gen-
Bank accession AF155773). All differences were confirmed in
two independently amplified PCR products. Five of the differ-
ences were nucleotide substitutions; two of these altered and
three did not alter the amino acid specificity of the codons in
which they occurred. The sixth difference was a T insertion
between nucleotides 72 and 73 of theFUM12 coding region.
The insertion caused a frame shift that introduced multiple stop
codons into theFUM12coding region. Such a frame shift would
cause incorrect translation as well as truncation of theFUM12-
encoded cytochrome P450 monooxygenase. Thus, the frame
shift mutation would almost certainly renderFUM12 nonfunc-
tional.

Generation of C-5 and C-10 Hydroxylation-Deficient
Strain. If the FUM12-encoded P450 monooxygenase catalyzes
fumonisin C-10 hydroxylation and, as previously demonstrated,
the FUM3-encoded dioxygenase catalyzes C-5 hydroxylation
(17, 22), a double mutant in which bothFUM12 and FUM3
are nonfunctional should be deficient in both C-5 and C-10
hydroxylation. To test this hypothesis, theFUM3 gene was
deleted in the C-10 hydroxylation-deficient strain 982-R-50.
Construction of theFUM3 deletion vector and analysis of
transformants were done as described previously forFUM3
deletion in wild-type strain M-3125 (22). PCR analysis indicated
thatFUM3 was deleted in only 1 of 52 transformants examined.
LC-MS analysis of cracked maize extracts of thisFUM3 deletion
mutant revealed that it produced only FB4, which lacks both
the C-5 and C-10 hydroxyls (Figure 3). As far as we are aware,
this fumonisin production phenotype has not been described
previously. In this experiment, the progenitor strain 982-R-50
produced 38µg of FB2 and 11µg of FB4 per milliliter of GYAM
and theFUM3 deletion mutant (in the genetic background of
strain 982-R-50) produced 21µg of FB4 per milliliter of GYAM
medium.

Characterization of a Naturally Occurring Fumonisin-
Nonproducing Variant. LC-MS analysis of cracked maize
cultures ofF. Verticillioides field isolate ISU-93-152 (Table 1)
revealed that it did not produce detectable levels of fumonisins.
In the same experiments, wild-type strain M-3125 produced
approximately 8000µg of FB1, FB2, and FB3 combined per
gram of cracked maize culture. To examine the inheritance of
the fumonisin-nonproducing phenotype, strain ISU-93-152 was
sexually crossed to wild-type strain M-3125. Of 20 single-
ascospore progeny examined, 6 produced the wild-type comple-
ment of FB1, FB2, and FB3 and 14 did not produce fumonisins.
Strain ISU-93-152 was also crossed with strain GfA2364, a

Figure 2. Southern blots of complementation and deletion strains. (A)
Deletion of FUM12 coding region. Lanes: M-3125, wild-type strain;
GfA2874 and GmT201, FUM12 deletion mutants. Under the conditions
of this analysis, the wild-type strain was expected to yield a 2.9-kb band
and strains in which the FUM12 coding region was replaced by the HygB
gene were expected to yield a 3.7-kb band. (B) Complementation of the
C-10 hydroxylation-deficient phenotype by transformation with the wild-
type FUM12 gene in pCFUM12-Hyg. Lanes: 109-R-14, C-10 hydroxyl-
ation-deficient progenitor strain; H7 and H10, strains generated by
transformation of strain 109-R-14 with pCFUM12-Hyg. Under the conditions
of this analysis, the endogenous FUM12 gene was expected to be present
as a 4.6-kb band and the FUM12 in vector pFUM12-Hyg was expected
to be present on a 1.7-kb band. (C) Complementation of the fumonisin-
nonproducing phenotype by transformation with the wild-type FUM1 gene
in vector pCFUM1. Lanes: 57-7-7, strain with naturally occurring
nonproduction phenotype; GfA2623 and GfA2630, strains generated by
transformation of 57-7-7 with pCFUM1. Under the conditions of this
analysis, the endogenous FUM1 from strain 57-7-7 was expected yield a
6.9-kb band and the FUM1 from vector pCFUM1 was expected to yield
a 2.7-kb band. Within panels A−C, each lane is from the same blot, but
lanes between those shown have been removed. Numbers to the left of
each panel indicate the positions of selected molecular weight markers
(kb) generated by digestion of phage λ DNA with EcoRI and HindIII.
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fumonisin-nonproducing mutant generated by disruption of the
polyketide synthase gene,FUM1, in the fumonisin biosynthetic
gene cluster (14). All 19 progeny examined from this second
cross exhibited the same fumonisin-nonproduction phenotype
of the two parental strains. Therefore, no recombination between
the mutation in ISU-93-152 and the disruptedFUM1 gene was
evident. Although these genetic analyses included only limited
numbers of progeny, they are consistent with the fumonisin-
nonproduction phenotype of strain ISU-93-152 being a heritable
trait that results from a mutation(s) that is (are) at least loosely
linked to theFUM1 gene and therefore theFUM cluster.

The loose linkage to theFUM gene cluster raises the
possibility that the fumonisin-nonproduction phenotype of strain
ISU-93-152 results from a mutation within the cluster. To
address this possibility, ISU-93-152 was transformed indepen-
dently with two overlapping cosmid clones (6B and 4-5), each
of which carried an incomplete set of cluster genes. Cosmid
clone 6B carried a complete copy ofFUM1, FUM6, andFUM7
but no other cluster genes, and cosmid clone 4-5 carried all of
the cluster genes (FUM3, FUM7, FUM8, andFUM10-FUM19)
except forFUM1 andFUM6 (14). Five hygromycin-resistant
isolates recovered following transformation with each cosmid
clone were analyzed for fumonisin production. Four isolates
recovered following transformation with clone 6B were restored
to fumonisin production, but none of the isolates recovered
following transformation with clone 4-5 were restored to
fumonisin production. These results indicate that clone 6B has
a wild-type copy of the gene that is mutated in strain ISU-93-
152 and that clone 4-5 does not. The fact that disruption of
FUM1 andFUM6 blocks fumonisin production (18) combined
with the presence of these two genes in clone 6B suggests that
the nonproduction phenotype of strain ISU-93-152 results from
a mutation in one of them.

Complementation of Fumonisin-Nonproduction Pheno-
type with FUM1. If the naturally occurring fumonisin-nonpro-
duction phenotype results from a mutation withinFUM1 or
FUM6, introduction of a wild-type copy of these two genes
into a nonproducing strain should restore fumonisin production.
To determine whether nonproduction can be restored byFUM1,
we used transformation to introduce a wild-type copy ofFUM1

into two strains (ISU-93-152 and 57-7-7) with the naturally
occurring nonproduction phenotype. Strain ISU-93-152 is a field
isolate obtained from maize grown in Iowa (31), and strain 57-
7-7 is a progeny of the fumonisin-nonproducing field isolate,
M-5500, from Nepal (Table 1). We used strain 57-7-7 rather
than M-5500 because it was more amenable to genetic analysis
and had been used successfully in previous transformation
studies (20).

The wild-type FUM1 used in this study was present in
complementation vector pCFUM1, which was cotransformed
(28) into strains ISU-93-152 and 57-7-7. Transformants were
selected by their ability to grow on hygromycin B-amended
media. LC-MS analysis of cracked maize culture extracts of
19 hygromycin-resistant transformants recovered following
transformation of strain 57-7-7 with pCFUM1 revealed that 15
produced the wild-type complement of FB1, FB2, and FB3 (the
presence of FB4 was not determined). The remaining four
transformants had the fumonisin-nonproduction phenotype of
progenitor strain 57-7-7. Likewise, LC-MS analysis of culture
extracts of 23 isolates recovered following transformation of
strain ISU-93-152 revealed that two produced the wild-type
complement of fumonisins. The levels of fumonisins produced
by the 17 complemented transformants of 57-7-7 and ISU-93-
152 ranged from 240 to 4500µg of FB1, from 21 to 1463µg of
FB2, and from 62 to 3067µg of FB3 per gram of cracked maize
culture (FB4 was detected but not quantified in this experiment).
Southern blot analysis of a subset of transformants derived from
both nonproducing progenitor strains confirmed the presence
of the complementation vector in fumonisin-producing trans-
formants (Figure 2C). For this analysis, genomic DNA was
digested withXbaI and the hybridization probe spanned from
503 bp upstream to 1051 bp down stream of theFUM1
translation start site. On the basis of known sequence data, the
region of the endogenousFUM1 complementary to the hybrid-
ization probe should have been present as a 6.9-kbXbaI
fragment, whereas the same region in vector pCFUM1 should
have been present as a 2.7-kbXbaI fragment. The Southern blot
analysis revealed that all fumonisin-producing transformants had
both the 6.9- and 2.7-kb fragments. The progenitor strains and
selected nonproducing transformants had the 6.9-kb fragment
only. These results indicate that the naturally occurring fumo-
nisin-nonproduction phenotype in strains 57-7-7 and ISU-93-
152 could be complemented by introduction of a wild-type copy
of FUM1.

FUM1 Sequence in a Fumonisin-Nonproducing Strain.
Complementation of two strains with the naturally occurring
fumonisin-nonproduction phenotype via introduction of a wild-
type copy ofFUM1 suggests that these strains have a mutation
within their FUM1 gene that renders the gene nonfunctional.
To address this possibility, we amplified and sequenced the
entire 8.16-kbFUM1 coding region from fumonisin-nonpro-
ducing strain 57-7-7. The sequence analysis revealed 20
nucleotide differences in theFUM1 coding region of strain 57-
7-7 compared to the previously reported wild-typeFUM1
sequence (GenBank accession AF155773). All differences
consisted of single nucleotide substitutions, 12 of which affected
and 7 of which did not affect the amino acid specificity of the
codons in which they occurred. Only one of the nucleotide
substitutions, a G-to-A transition at nucleotide 5415 of the
protein coding region, disruptedFUM1 by introducing a
premature stop codon that would stop translation prior to
synthesis of the enoyl reducatase, keto-reductase, and acyl carrier
domains of the polyketide synthase encoded byFUM1 (20).
Thus, the presence of the G-to-A transition at nucleotide 5415

Figure 3. Total ion chromatograms from LC-MS analysis of GYAM culture
filtrates of wild-type strain M-3125, C-10 hydroxylation deficient strain 982-
R-50, and strain GmT4-8, which was generated by deletion of FUM3 in
strain 982-R-50.
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would almost certainly renderFUM1 nonfunctional. The pres-
ence of the G-to-A transition was confirmed by sequence
analysis of a 700-bp amplicon that spanned nucleotide 5415.

Sequence analysis of the same 700-bp region ofFUM1 in
strain ISU-93-152 revealed that this strain did not differ from
the wild type at nucleotide 5415. In addition, overlapping 1.5-2
kb DNA fragments amplified by PCR from along the entire
length of theFUM1 coding region in strain ISU-93-152 and
wild-type strain did not exhibit a noticeable difference in size
when viewed on an ethidium bromide-stained agarose gel (data
not shown). These data indicate that the mutation in the ISU-
93-152FUM1 gene responsible for the nonproduction phenotype
is not a large (>50 bp) insertion or deletion in the coding region.

DISCUSSION

Natural variation in mycotoxin production within individual
fungal species and between closely related species has received
considerable attention because of the potential impact of such
variation on human and animal health, on international trade,
on biological control of mycotoxin contamination, and on
understanding mycotoxin biosynthesis. In the cases of aflatoxins
and trichothecenes, the molecular genetic basis of some of the
variation has been demonstrated. For example, some field
isolates ofAspergillus flaVusdo not produce aflatoxins because
of a single nucleotide substitution that introduces a premature
stop codon in the coding region of the polyketide synthase gene
in the aflatoxin biosynthetic gene cluster (32). In field isolates
of F. graminearum, production of the trichothecenes nivalenol
and 4-acetylnivalenol versus deoxynivalenol can result from
multiple deletions and insertions in a monooxygenase gene
(Tri13) and an acyltransferase gene (Tri7) in the trichothecene
biosynthetic gene cluster (33, 34). Prior to the current study,
characterization of the molecular genetic basis of natural
variation in fumonisin production inF. Verticillioides has been
incomplete. The results reported here, however, provide direct
evidence that this variation can result from point mutations in
genes in the fumonisin biosynthetic gene cluster.

Three lines of evidence from the current study indicate that
the C-10 hydroxylation-deficient phenotype resulted from a
mutation within theFUM12 gene. First, laboratory-induced
FUM12 deletion mutants exhibited the C-10 hydroxylation
deficiency; second, the naturally occurring deficiency was
complemented by transformation with a wild-type copy of
FUM12; and third, theFUM12coding sequence in a strain with
the naturally occurring deficiency had a frame shift mutation
predicted to render theFUM12-encoded monooxygenase non-
functional. Previous meiotic analyses determined that the
naturally occurring C-10 hydroxylation deficiency was caused
by a nonfunctional allele at theFum2locus (13). Thus, the data
reported in the current study also indicate that the meiotically
definedFum2 locus and the molecularly definedFUM12 are
the same gene. BecauseFum2was described prior toFUM12,
we propose that hereafter the gene be designatedFUM2.
Furthermore, because the results of this study revealed that the
monooxygenase encoded byFUM2 is responsible for fumonisin
C-10 hydroxylation, they further define the functions of the
FUM cluster inF. Verticillioides.

Complementation experiments in the current study also
localized the naturally occurring fumonisin nonproduction
phenotype in two strains with distant geographic origins to the
polyketide synthase gene,FUM1, in theFUM cluster. Further-
more, sequence analysis indicated that the nonproduction
phenotype in strain 57-7-7 most likely resulted from a nucleotide
substitution that introduced a premature stop codon in theFUM1

coding region. Restoration of wild-type fumonisin production
to strain ISU-93-152 by transformation withFUM1 indicated
that the mutation responsible for the fumonisin-nonproduction
phenotype in ISU-93-152 was located inFUM1. Limited
sequence analysis demonstrated that the mutation was not
located in the same position as in strain 57-7-7 and did not
resolve whether the mutation in ISU-93-152 was in the coding,
promoter, or termination region ofFUM1. Previously reported
meiotic analyses demonstrated that the fumonisin-nonproduction
phenotype in 57-7-7 resulted from a nonfunctional allele at the
Fum1 locus (13,21). Thus, the results from the current study
combined with the previous meiotic analysis indicate that the
molecularly definedFUM1 gene and the meiotically defined
Fum1 locus are the same gene. In keeping with the current
designation ofFUM and otherF. Verticillioides genes, we
propose that hereafter the gene be referred to asFUM1.

When compared to the published sequences for wild-typeF.
Verticillioides, FUM1 in strain 57-7-7 andFUM2 () FUM12)
in strain 109-R-14 included nucleotide substitutions in addition
to those that introduced the premature stop codon inFUM1 and
frame shift inFUM2. Some of these other changes affected the
amino acid specificity of the codons in which they occurred.
However, it is not clear whether the resulting amino acid
substitutions would affect the activity of theFUM1 or FUM2
enzymes. Regardless, the premature stop codon inFUM1 of
57-7-7 and the frame shift inFUM2 of 109-R-14 would cause
such profound changes in the corresponding proteins that the
proteins would be nonfunctional.

Most field isolates ofF. Verticillioides produce the full
complement of FB1, FB2, FB3, and FB4 (11). The scarcity of
the nonproduction and C-5 and C-10 hydroxylation-deficient
phenotypes in natural populations of the fungus may be an
indication that FB1 production contributes to the competitiveness
of the fungus. Characterization of fumonisin biosynthetic genes
and elucidation of the genetic basis of naturally occurring altered
fumonisin production phenotypes should contribute to under-
standing the role, if any, of the toxins in the ecology ofF.
Verticillioides.
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